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Critical splitting of the solidifying 
interface-geometrical model of spacing 
selection during directional solidification 
of lamellar eutectics 
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The steady-state coupling equations of directional solidification of AI-AI2Cu (~ = 0.94), Sn-Pb 
(e = 0.59)and AI-Si (~ = 0.17)eutectics have been solved numerically. The profiles, splitting 
features and supercooling of the solidifying interface were investigated in detail as functions of 
the lamellar spacing. It was found that when supercooling, ATo, at the three-phase conjunction 
point reaches its minimum value, min (ATo), the solidifying interface profile of one lamellar phase 
was in the critical splitting state (marginally stable state) and that of the other lamella was 
super-stable. Langer's marginal stability theory of lamellar eutectic solidification with a planar 
interface was extended to the case with a curved interface, and a geometrical model of the spacing 
selection has been suggested (critical splitting state of one lamella's solidifying interface). The 
general scaling law of the spacing, derived according to this theory, was found to be consistent 
with the similarity law recently derived by Kassner and Misbah; it is also supported by 
experimental results. Another geometrical model of the spacing selection was found, where the 
solidifying interface profile of one lamella became split and other lamella's profile was in the 
critical splitting state. The experimental data for directional solidification of AI-Si eutectic showed 
that the irregular eutectics have a spacing selected according to this mode. 

1. Introduction 
When a eutectic is submitted to directional solidifi- 
cation, the solidifying interface forms parallel lamellae 
of two coexisting solid phases, ~ and 13. This problem 
is of interest both from the view point of technological 
applications [1, 2] and, more fundamentally, as an 
example of spontaneous pattern formation in nature. 
In the last decades, many physicists and metallurgists 
have made much effort to predict the spacing selec- 
tion of lamellar eutectic [3]. It is well known that 
supercooling, AT, of the solidifying interface and the 
lamellar spacing, 2, are uniquely determined by the 
solidifying rate, V. Based on the ~ assumption of 
a planar solidifying interface, the theoretical approach 
to this problem shows ATcan be formulated as a func- 
tion of V and )~ [4] 

A T  = K1)~V + K2/X (1) 

where K1 and K2.are, respectively, the constitutional 
supercooling effect and the Gibbs-Thompson effect of 
the solidifying interface. This relation allows wide se- 
lection ranges of both )~ and AT for a given V, and 
therefore it cannot predict unique values of ~. and A T, 
as shown by experiments. This problem is similar in 
form to the formation of a dendritic pattern in the 
growth of binary mixture [5] and evolution of viscous 
fingers in the Hele-Shaw cell [6], and hence belongs to 
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a class of pattern-formation problems far from equi- 
librium in nature which are controlled by the Laplace 
field. Generally, a dynamic selection principle (precise- 
ly speaking, a dynamic conjecture) needs to be in- 
duced in order to solve this problem. For the present 
case, the minimum supercooling conjecture is com- 
monly used [7] and the following scaling relation can 
be obtained from Equation 1 [4] 

~. -~ V-1/2 (2) 

This relation is strongly supported by many experi- 
mental results. Further, Langer and co-worker [8, 9] 
and Cline [10-14] verified that this conjecture co- 
incides with the operating point of dynamically mar- 
ginal stability. The problem seems to be solved. 

Unfortunately, following deep discussion about this 
problem above, we suspect the generality of the scal- 
ing relation, Equation 2. At first, we notice that the 
profile of the solidifying interface must be curved. This 
is naturally determined by the coupling of consti- 
tutional supercooling and the Gibbs-Thompson effect 
(if we neglect the kinetic effect) of the solidifying inter- 
face. Secondly, in the case for a curved solidifying 
interface, is Langer's stability theory [8], based on the 
assumption of planar solidifying interface, valid? Even 
if we pre-assume its validity, precisely speaking, at this 
time, we do not know which point of the interface this 
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theory should be applied to, because only the super- 
cooling, AT(x ) at a point x of the curved interface, has 
any physical meaning. If Vis high, the interface can be 
approached as a plane, because L is much less than the 
thermal diffusion length. If V is low, this approach is 
invalid. To our knowledge, the cases with 
V <  10 btms -* have not been investigated experi- 
mentally to any great extent. Therefore, at least in the 
case where V is low, the validity of Equation 2 should 
be suspected. Finally, the profile of the solidifying 
interface forms self-consistently. Under conditions of 
directional solidification, the geometrical features of 
the interface in fact are determined by the coupling of 
the thermal transfer, the solute diffusion and also the 
Gibbs-Thompson effect, and hence can reflect the 
dynamic behaviour of spacing selection. The planar 
interface approximation arbitrari ly discards this 
coupling and the non-linear characteristics of the 
spacing selection dynamics. 

In this paper, attention is paid to the geometrical 
features of the solidifying interface and the dynamic 
behaviour of the spacing selection by solving numeri- 
cally the non-linear steady-state coupling equation of 
directional solidification of a lamellar eutectic. It will 
be proved that the critical splitting state (CSS) of the 
solidifying interface of, at least, one lamellar phase, 
corresponds to the minimum supercooling at the 
three-phase conjunction point (TPCP); at this time, 
the solidifying interface forms in the stability limit (i.e. 
marginally stable). A new selection mechanism of the 
spacing - the critical splitting model of the solidifying 
interface - is suggested. The general scaling laws, de- 
rived according to this model, are consistent with the 
similarity law derived by Kassner and Misbah [15]. 
Finally, the selection problem of spacing of an irregu- 
lar eutectic during directional solidification is also 
discussed. 

2. C o u p l i n g  e q u a t i o n  and n u m e r i c a l  
c a l c u l a t i o n  

In the coordinate system shown in Fig. 1, the profiles 
of a-liquid and [Miquid interfaces are expressed by 
f (x )  and 9(x), respectively. The coupling equation can 
be written as [16] 

= 

r ~ f " ( x )  
[1 + f'2(X)]3/2 

O<_x<_& (3a) 

ATo - Go(x)  = - m p K c o s  ~ - x  
n = l  

r ~  g"(x) 
[1 -I- gt2(X)]3/2 

S~ < x <_ S~ + S~ (3b) 

K = ( ~ - ) ( n @ ~ 2 )  " [2nrts=)sln~-~- (3C, 

where ms and m 9 are the absolute values of the liquidus 
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Figure 1 The coordinate system and profile of the solidifying inter- 
face of a lamellar eutectic. The spacing of the periodical interface is 
denoted by )v. 

slopes of ~ and [3 phases, respectively, D is the solute 
diffusion coefficient, G is the temperature gradient in 
the liquid in front of the solidifying interface, F ~ and 
F 9 are the Gibbs-Thompson coefficients of the ~- 
liquid' and IMiquid interfaces, respectively, Co is the 
difference between the maximum solubilities of the 
two phases. ATo is the supercooling at the TPCP. For 
the detailed derivation of Equation 3, please refer to 
Liu et al. [16]. The boundary conditions are 

f (x )  = g(x) = 0 a s x = S ~  (4a) 

f ' (x )  = - tgO~,g'(x) = tgO~ as x = S~ (4b) 

f ' ( x = O ) = O ,  g'(x = S~ + S 9 = L/2) = 0  (4c) 

where 0= and 0 9 are the groove angles of the a-liquid 
and IMiquid interfaces at the TPCP, which are deter- 
mined by the mechanical balance condition at the 
TPCP. 

As V and G are given, another boundary condition 
besides Equation 4 is required to obtain unique solu- 
tions of s kTo,  f ( x )  and g(x) from Equation 3. In 
Equation 3 the temperature gradient dependence of 
solidification is included, which is, in fact, proved to be 
considerable at low V by some experiments. 

Equation 3 will be solved by the finite difference 
method. We have noticed that the ratio 8( = $9/S~ ) in 
volume of two lamellar phases as a key physical para- 
meter has considerable influence on the profile of the 
solidifying interface. Therefore, Al(a)-AlgCu(13) 
(8=0.935), Sn(a)-Pb(13) (8--0.594), al(~)-Si(~) 
(8 = 0.167) eutectics have been selected as the objects 
of our numerical calculations. The physical para- 
meters of the three eutectics are listed in Table I [4, 17, 
18], where values of 0~ and 0~ are calculated from the 
mechanical balance condition 

cr=L cos O~ = %L cos 0 9 (5a) 

O'~L sin 0~ + %L sin 0~ = ~9  (5b) 

Of the three eutectics, the case of A1-Si is the most 
complicated. For this eutectic, ATo terms in Equa- 
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tion 3a and b are not equivalent to each other, which 
are respectively denoted by ATg and AT~o. We find the 
ratio AT~/AT~o _~ ~. This is a large defect for our 
model. In fact, at the TPCP (x = S~, z = 0), strong 
co-diffusion must occur between c~ and 13 phases, and 
in addition, the local equilibrium condition of thermo- 
dynamics will be invalid within a small range around 
this point. We are convinced that AT~ -= AT~o, under 
directional solidification conditions. Here, we still 
proceed by considering the validity of the local equi- 
librium condition, and hence treat ATg and AT~o as 
two physical parameters for the case of AI-Si eutectic. 

In the numerical calculations, attention is given to 
the profile, the splitting features and the supercooling 
terms of the solidifying interface. The detailed proced- 
ures of the calculation are omitted owing to their 
simplicity. 

3. Results and discussion 
3.1. Interfacial supercooling 
As pointed out above, only supercooling at a point of 
the solidifying interface has any physical meaning. 
Here, we discuss the supercooling at the TPCP, AT0, 
and the average supercooling, AT. (For A1-Si eutectic, 

correspondingly, AT~ and AT~o, AT~ and ATe). The 
definitions of these average supercooling terms are as 
follows 

G 
AT = AT0 -- ~ If(x) + ~g(x)] (6a) 

AT~ = A T e -  G f(x) (6b) 

AT~ = A r g o -  Gg(x) (6c) 

f(x) = ~ f(x)dx, 

l fS~+S~ 
= g(x) dx (6d) 

As functions of the spacing L, ATo (ATe, AT~o), AT 
(ATe, ATe) are calculated, respectively, as shown in 
Figs 2-4. In general, the supercooling ATo 
(ATe, AT~o) can be expressed as 

A T o = a ) ~ V + b / 2 ,  a > 0 ,  b > 0  (7) 

Thus, as a function of~,  ATo (ATe, AT~o) has a min- 
imum value, min(ATo), and the spacing-dependent 
upper curve of ATo behaves in a concave manner. AT 
(A T~, A T~) has the similar form to Equation 7 and has 
also a minimum value, rain (AT). Interestingly, at high 
V, the difference between ATo (AT~o) and AT (ATI3) is 
small, and the minimum value positions ofATo (AT~o) 
and AT (ATe) as functions of X, denoted, respectively, 
by )~l and X2, (i.e. X1 ~-  X IATo = m i n ( A T o )  and 
9~2 = )~]Xr=mi~(~)), are consistent with each other; 
however, at low V, large difference between ATo and 
AT appears, and X1 moves considerably towards the 
left from )~z. If we now apply Langer's marginal stabil- 
ity theory [8, 9] to determine the spacing, X, forming 
during solidification, we may have two mechanisms to 
be selected: )~1 and ~2. 
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Figure 2 (a) Supercooling, ATo, at the TPCP and (b) the average 
supercooling, AT, as functions of the lamellar spacing, X, for direc- 
tional solidification of Al-AlzCu eutectic. V = 10 grn s- 1, 
G = l l0Kcrn  -1, X1 = 3.30grn, ~2 = 3.33 gm. 
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Figure 3 (a) Supercooling, ATo, at the TPCP and (b) the average 
supercooling, AT, as functions of the lamellar spacing, X, for direc- 
tional solidification of Sn-Pb eutectic. V = 30 grn s i, 
G ~ 100 Kcm -1, )~1 = 0.50 prn, k2 = 0.51 grn. 

3 .2 .  Inter facia l  prof i le  
F r o m  E q u a t i o n  3, we infer cons ide rab le  dependence  
of the interfacial  profile on  the spac ing  as V a n d  G are 
given. The  p l a n a r  a p p r o x i m a t i o n  of the interfacial  
profile is obv ious ly  inval id .  Figs  5 -7  show ca lcu la ted  
profiles of the sol idifying interface wi th  different 
spacings  for the three  eutectics.  W h e n  the spac ing  
X increases,  in  the n o r m a l i z e d  c o o r d i n a t e  systems 
s h o w n  in Fig. 5 -7 ,  the interracia l  profile moves  rela- 
tive to the T P C P  to the solid side. As ~ is very small ,  

3 0 8 8  

0.3 

0.2 

~ ~  I 
i 

0 ,0  , I . . . .  
(aj 0 1 ,.. Z 3 

3 
o rain (A ) 

1 ' 1 21 . . . . .  
0 1 Z 3 Ib) 

0.4i  

0,~ . w 
[<  0.2 

0.1 I 
I 

0 .0  ' , I , , , , 
I r  1 Z 3 

0 t Z 3 

Figure 4 Supercooling terms, (a) AT~ and (b) AT~o, at the TPCP 
and the average supercooling terms, (c) AT~ and (d) ATe, as fun- 
ctions of the lamellar spacing, )~, for directional solidification of 
A1-Si eutectic. V=10gms-1 ,  G=110Kcm-1 ,  X=%/)~1, 
~1 = 2.70 gm, ~2 = 2.71 Hrn. 
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Figure 5 Profiles of the solidifying interface with different spac- 
ings, )~, for directional solidification of A1-A12Cu eutectic. 
V = 2.00 gms-1; G = 110 Kcm 1; (1))~ ~ 30.0 lam; (2) X = 15.0 gm; 
(3) X = 12.00 ~tm; (4) X = 1.00 gin. 

the interfacial  profile bulges  in to  the l iquid  range;  
however ,  the midd le  pa r t  of  the interfacial  profile 
becomes  cons ide rab ly  concave  to the solid side, be-  
cause X is large. Obv ious ly ,  for the la t te r  case, the 
weak  cu rva tu r e  effect of  the  interface indica tes  the 
d o m i n a t i o n  of the  c o n s t i t u t i o n a l  supe rcoo l ing  in  f ront  
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Figure 6 Profiles of the solidifying interface with different spacings, 
~,, for directional solidification of Sn-Pb eutectic. V = 5.00 lam s- i, 
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Figure 7 Profiles of the solidifying interface with different spacings, 
7̀ , for directional solidification of AI-Si eutectic. V = 2.00 I~rn s-1; 
G = 110 Kcrn-1; (1) 7̀  = 0.50 btrn; (2) X = 2.70 ~trn; (3) X = 5.00 ixrn; 
(4) 7, = 7.00 pro; (6) 7̀  = 9.50 ~tm. 

of  the concave middle  range of  the interface, which will 
result  in fur ther  movemen t  of the interface to the solid 
side unti l  a new lamel la r  phase  forms in the concave 
l iquid range. At  this time, the local  l amel la r  spacing 
will fall to half  the ini t ial  spacing. Conversely,  the 
curva ture  effect, the thermal  t ransfer  and  the mechan-  
ical ba lance  cond i t ion  at  the T P C P  will res t ra in  the 
tendency of movemen t  to the l iquid side of  the bulging 
interfacial  profile, because X is very small. Therefore,  

a s table interfacial  profile will bulge sl ightly into the 
l iquid range; and  the concave interfacial  profile on the 
solid side will be unstable.  

The  t empera tu re  grad ien t  dependence  of the inter-  
facial profile was also calculated.  W e  found that  the 
profile was compel led  to recover  to the p l ana r  state as 
G increased.  However ,  this dependence  only became 
cons iderable  at low V. 

3 .3 .  S p l i t t i n g  the  s o l i d i f y i n g  in te r face  
F r o m  Figs  5-7,  it is not iced that  the interface profile 
splits when X increases. F o r  symmet ry  reasons,  

f " ( x  = 0) and  g"(x = X/2) can be used to character ize  
the spl i t t ing features of  the interfacial  profiles, f (x)  and 
g(x), respectively. In  the coord ina t e  system shown in 
Fig. 1, the interfacial  profile has split  as f "  (x = 0) _> 0 
(g"(x = ~,/2)>_ 0); the profile bulges into the l iquid 
side as f " ( x  = O) < 0 (9"(x = ~/2) < 0). The  la t ter  
case is te rmed the super-s table  state. 

A deta i led  invest igat ion of  the spl i t t ing features was 
made.  f " ( x  = 0) and g"(x = k/2) were ca lcula ted  as 
funct ions of k for the three eutectics. The results are 
shown in Figs 8-10; in Fig, 10 we use the normal i zed  
coordina te :  k = k/k1.  ~,1 is defined in Sect ion 3.1. In- 
terestingly,  we find that  for the three eutectics, 
f " ( x  = 0) a n d / o r  9"(x = ~,/2) = 0 as X = 1.0. This in- 
dicates that  when the supercool ing  ATo at  the T P C P  
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Figure 8 The calculated f ' (0)  and g"(7`/2) as functions of the spac- 
ing, k, for directional solidification of AI-AIzCu eutectic. 
V= 2.00p, ms -1, G = l l0Kcm -1. 
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Figure 9 The calculated f ' (0)  and 9"(~/2) as functions of the spac- 
ing, k, for directional solidification of Sn-Pb eutectic. 
V= 30.00 I, tms-l;  G = 100 Kern -1. 
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Figure 10 The calculated f"(0) and g'(X/2) as functions of the 
spacing, X, for directional solidification of AI-Si eutectic. 
V= 10.00gms -1, G = ll0 Kcm -1. 

(for A1-Si eutectic, AT~o) reaches its. m in imum value, 
min (A To), at least, the interracial profile of one lamel- 
lar phase is in the critical splitting state (CSS), and the 
other lamellar  phase has a super-stable solidifying 
interface. We also found that  f"(x--O) and 
9"(x = X/2) could be formulated as 

f"(x = 0) (or g"(x = k/2)) = A l n ( B ~ )  (8) 

where A and B are positive constants.  I f f " ( x  -- 0) (or 
9"(X/2)) intersects with the ~, axis at ~ = 1.0, B = 1.0. 
This relation will be useful in the following discussion 
of pat tern  stability of the solidifying interface. 

3.4. Geometric model - the CSS of the 
solidifying interface 

If  we only consider cases where there is at least one 
lamellar  phase having its solidifying interface in the 
CSS, there are five modes,  as shown in Fig. 11. For  
a eutectic, the corresponding modes  are determined by 
the splitting feature of the interface and the mechan-  
ical balance condit ion at the TPCP .  For  example,  for 
A1-AlzCu eutectic, because 0o ~ 0~, the m-liquid and 
J3-1iquid interfaces a lmost  s imultaneously reach the 
CSS as ATo = min(ATo);  however,  for S n - P b  eutectic, 
because 0~ < 00, the a-liquid interface is super-stable 
(f"(x = 0) < 0) when the J3-1iquid interface reaches the 
CSS as ATo = rain(AT0). 

For  Modes  (a), (b) and (c), one lamellar phase has 
the super-stable interface a l though the interracial pro-  
file of the other lamellar  phase is in the CSS. We can 
prove that  the pat tern  of this interface in the CSS is 
marginal ly  stable by dynamics.  As f"(x = 0 ) =  0 (or 
g"(x = X/2) = 0), we find that  f(x = 0) (or 90~/2)) as 
a function of X will reach its m a x i m u m  value. Here, 
only the case of f"(x = 0 ) =  0 is discussed. For  the 
case of 9"(x = X/2) = 0, a similar derivat ion can be 
given. 

In the coordinate  system shown in Fig. 1, at the 
T P C P  we have z - 0. Hence, ATo in Equat ion  3a can 
be treated as a constant.  Because f"(x = 0 ) =  0, we 
have from Equat ion  3a 

A T o - G f ( x = 0 )  = Z (9) 
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Figure 11 The five modes of spacing selection for directional solidi- 
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oo 
where 2; = ~ mo K. Let us consider a f luctuation of 

n = l  

the spacing, AL; as the first-order approx imat ion  we 
have 

A r o - G [ f ( x = 0 ) + A f ]  = ~ 2 + A Z - F  ~  

(I0) 

where A~ AZ and Af" are the corresponding fluc- 
tuations of f(x = 0), Z and f", respectively. Combin- 



ing Equations 9 and 10, we obtain 

GAf  = F~Af ' ' -  AN (11) 

From Equation 3a and c, we have AZ = aAL, where 
a is a positive constant. From Equation 8 we have 
A f " =  b(AL/L), where b is also a positive constant. 
Finally we obtain 

G Af = I-F ~ (b/L) - a] AX (12) 

As AL ~ 0, Equation 12 becomes 

df (x = O) 
o dL - r 2 b / L )  - a (13a) 

6 f ( x = O )  = F~blnL-a;~.  + C (13b) 

where C is a constant to be determined, df(x = 0)/dL 
and f ( x  = 0) as functions of L are drawn schematically 
in Fig. 12, where df(x = 0)/dX is a decreasing function 
of L and f ( x  = 0) has a maximum value. For all three 
eutectics, our calculation shows that when L = L1 (i.e. 
f "  (x = O) = 0), f ( x  = 0) reaches its maximum value. 
This is a meaningful conclusion; physically, the profile 
of the a-liquid interface always bulges as far as pos- 
sible into the liquid range when the supercooling ATo 
(AT~o) at the TPCP reaches its minimum value. When 
X > L~, the interface splits, f ( x  = 0) is a decreasing 
function of L, as shown in Figs 5-7; when L < X~, 
f ( x  = 0) becomes an increasing function of L because 
of the coupling between thermal transfer and the cur- 
vature effect, and restraining of the mechanical bal- 
ance condition at the TPCP. 

From the stability point of view, the solute diffusion 
in a liquid destabilizes the interface and attracts the 
interface towards the liquid range ( f (x  = 0) increases), 
and finally results in midpoint-splitting of the inter- 
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Figure 12 The spacing dependence of(a) f~(0) and (b) f'(0) drawn 
schematically. 

face. Conversely, the thermal transfer, the curvature 
effect, and also the mechanical balance condition, re- 
stabilize the interface; the former two effects compel 
the interface to become planar ( [ f (x  = 0)1 decreases). 
During the competition between the destabilizing and 
restabilizing effects, if the former effects are dynam- 
ically dominant, the interface profile will bulge as far 
as possible into the liquid range. Thus, dynamically, 
the interracial pattern will approach as much as pos- 
sible, the stability limit for Modes (a), (b) and (c). This 
limit is naturally similar to Langer's marginal stability 
principle of the tip point of needle crystal growth 
[5, 19]. As Langer has verified, the marginal stability 
criterion coincides with the minimum supercooling 
conjecture, assuming a planar interfacial profile [8, 9"]. 
In the above section we have proved that the CSS of 
the interracial profile of one lamellar phase (the other 
lamellar phase having the super-stable interface) cor- 
responds to the minimum value state of supercooling 
at the TPCP. Therefore, we are convinced that we can 
now extend Langer's marginal stability theory I-8, 9] 
into a geometrical model: during directional solidifi- 
cation, a lamellar eutectic will have one solidifying 
interface in the CSS and the other interface will be 
super-stable. 

It is useful to compare this geometrical model with 
Langer's marginal stability theory for needle crystal 
growth [5]. By comparison, it can be clearly shown 
that the geometrical model is physically reasonable. 
At first, Langer proved that the steady-state needle 
crystal selects its tip radius P = P*, at which the tip 
point is marginally stable. If 9 > P*, the tip of this 
needle crystal will become unstable, and tip splitting 
will occur. For the present geometrical model, a criti- 
cal spacing, kl ,  also exists if L > L1, the interracial 
profile of one lamellar phase will become unstable and 
mid-point splitting will occur for this interface. Sec- 
ondly, for needle crystal growth, as 9 = P*, the posi- 
tion of the tip point~eaches the maximum value (in the 
coordinate system, moving with the growing inter- 
face). For eutectic solidification, as L = L1, the mid- 
point of the interface in the CSS also reaches its 
maximum value (in the coordinate system shown in 
Fig. 1). 

3.5. Geometrical model of irregular eutectic 
solidification 

In Section 3.3 we investigated the stability of Modes 
(a), (b) and (e) shown in Fig. 11. In this section. Modes 
(d) and (e) will be discussed further. 

Modes (d) and (e) are obviously unstable because 
one lamellar phase has a split interfacial profile, al- 
though the other lamellar phase has a critical splitting 
interface. In the liquid range in front of the concave 
part of the split interface, the constitutional supercool- 
ing effect is dominant and the curvature effect is weak. 
A new lamella easily forms in this liquid range. If 
a eutectic selects Mode (d) or (e) during directional 
solidification, the forming lamellar structure is pre- 
dicted to be irregular. For these eutectic systems with 
a small value of ratio ~, such as A1-Si eutectic and 
borneol-succinonitrile eutectic, usually the ~ lamella 
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has a splitting solidifying interface. The directionally 
solidified structures of these eutectics are irregular 
[20]. In situ observation of the solidifying interface of 
borneol-succinonitrile eutectic [21] supports our dis- 
cussion of the instability of Modes (d) and (e), and 
predicts that the formation of irregular structures for 
these eutectics with low ~ follows Mode (d) or (e). 

3.6. Scal ing  law of eu tec t ic  sol idif icat ion 
In Sections 3.4 and 3.5, we have proposed two geomet- 
rical models. Here, we calculate the scaling relation for 
directional solidification of the three eutectics, accord- 
ing to the two models. For directional solidification of 
A1-A1/Cu eutectic and Sn-Pb eutectic, Modes (a) and 
(c), respectively, will be followed. We find the spacing 
X satisfies the following scaling law 

X ~ V-~/gT(G/V) (14) 

where f is an increasing function of V and saturates at 
high V. As V is high, this scaling returns to Equa- 
tion 2. Fig. 13 shows the dependence of f on V, for 

A1-A12Cu eutectic with G = 100Kcm -1 and for 
Sn-Pb eutectic with G = 110 K c m - 1  f can be ex- 
pressed as an exponential function of V. 

For AI-A12Cu eutectic 

f ~ e x p ( -  0.79G/V) 

( G i n K ~ t m  -1, V i n g m s  -1) (15) 

For SnLPb eutectic 

f ~ e x p ( -  0.3355 G/V) 

( G i n K g m  -1, V i n g m s  -1) (16) 

Obviously the formation of local regular structure of 
AI-Si eutectic during directional solidification will fol- 
low Mode (b); the scaling law differs in form from 
Equation 14 

X ~ V-~/af(G1/Z/v) (17) 

where f is also an increasing function of V and 
saturates at high V, which can be expressed as 

f ~ e x p ( -  0.0513 G1/2/V) 

( G i n K g m  -1, V i n g m s  -1) (18) 

In fact, Equations 15 and 17 are general scaling laws 
of X, and take into account the temperature-gradient 
effect of spacing selection, although this dependence 
only becomes considerable at low V, as shown in 
Section 3.2. Kassner and Misbah [15-1 recently derived 
a similarity law of eutectic solidification by complex 
nume@al solving of a non-linear integral-differential 
equation. This law is consistent in form with Equa- 
tions 14 and 17. This is strong theoretical proof of the 
validity of our geometrical model. Comparing Equa- 
tions 14 and 17 with Equation 2, we find that when 
V > 10 gins -1, Equation 2 is a good approach to 
Equations 14 and 17. Therefore, Equations 14 and 17 
are two general scaling laws. 

Although Modes (d) and (e) are dynamically unsta- 
ble, under the steady-state condition we still calculate 
the scaling law according to these modes. Select solidi- 
fication of Al-Si eutectic as an instance. The cal- 
culated scaling law is 

X ~ V-1/"h(G) 2 < n < 3 (]9) 

where h is a decreasing function of G, which can be 
expressed as 

h ~ G-°°22(G in K g m  -~) (20) 

The validity of Equation 19 is checked below, using 
our experimental results. 

Figure 13 Optimal  micrographs of the regular structure A1-Si eutec- 
tic forming during directional solidification. (a) V =  3.10gins ~, 
G = 149 K c m -  ~, radial section. (b) V = 0.29 grns-  1, G = 106 K c m -  7, 
longitudinal section. 
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4. Experiments and comparison 
In recent years some experimental data on directional 
solidification of the three eutectics have accumu- 
lated [2, 3, 22], in which V > 1 0 g m s - 1 .  As 
V_> 10~tms -1, the difference between the classic 
scaling law (Equation 2) and the general scaling laws 
(Equations 14 and 17), will be hard to distinguish. 
Naturally, when V > 10 gins -1, Equations 14 and 17 
are no doubt valid. Further checking of the two laws 



requires new experimental data with low V, down to 
0.1 gm s-1, as reported by Kassner and Misbah [15]. 
Here we will restrict our attention to checking the case 
for A1-Si eutectic, because for this eutectic both local 
regular lamellar structure and irregular structure form 
when V is less than 10 gms -1. This provides the 
opportunity to check the validity of Equation 17 and 
19 at the same time. 

The experiments were performed on a unidirec- 
tional solidification apparatus, in which steady-state 
directional solidification with V as low as 0.2 ~tm s- t 
can be obtained. The detailed procedure of the experi- 
ment is described elsewhere [20, 22]. Unfortunately, it 
is not easy to obtain much data for solidification with 
such a low V, because a large amount of effort is 
required for each successful experiment. 

Fig. 13 shows two typical micrographs of the local 
regular structure. The spacing of the local regular 
structure is denoted by Xr. The measured spacing, Xr, 
and the calculated spacing, Z~, according to Equa- 

T A B L E  II The measured and calculated spacings of local regular 
structure of AI-Si eutectic during directional solidification 

Sample V ( g m s  -1) G ( K c m  1) 2r(/.tm) 2c(gm) 

01 0.29 106 14.97 • 0.48 15.06 
02 0.57 149 11.04 + 0.35 11.18 
03 1.03 78 8.01 4- 0.37 8.37 
04 1.05 149 7.97 4- 0.39 8.27 
05 5.00 149 3.85 • 0.11 3.81 
06 6.62 89 3.10 • 0.24 3.31 
07 10.00 78 2.60 • 0.15 2.70 

tion 17, are listed in Table lI. Good consistency of Xo 
with Zr proves the validity of the scaling law, Equa- 
tion 17. 

For the irregular structure, a typical micrograph of 
the quenched solid-liquid interface can be found else- 
where [20]. Fig. 14 shows the irregular structure 
observed along the longitudinal section. The main 
feature of the middle range of the s-liquid interface is 
that it is deeply concave into the solid side, as also 
reflected by the calculated profile of the solidifying 
interface with large X, as shown in Fig. 7, although the 
quenched interface profile is irregular. 

In experiments, we have applied the thermal-differ- 
ence amplifying method to measure the interface 
supercooling [22], which corresponds to the average 

of AT~ and ATe. The measured supercooling, ATe, 

and the calculated supercooling, AT~=(AT~+ 

ATe)/2, are listed in Table III, where Zm and Z~ are, 
respectively, the measured average spacing and the 
calculated spacing according to Equation 19, for the 
irregular structure of A1-Si eutectic during directional 
solidification. 

From Table III, we are convinced by the excellent 
agreement of the measured and calculated data that 
the solidifying interface of irregular structure selects its 
average spacing according to the Mode (e), although 
we cannot give precise proof of this dynamical mode 
from the view point of instability dynamics. So far, to 
our knowledge, no model can obtain such strong 
support from experiments, hence there is no reason to 
prevent us undertaking a further study of this dynam- 
ical mode: e.g. the instability analysis, etc. However, 

T A B L E I 11 Comparison of the theoretical and experimental data for the directional solidification of irregular structure of AI-Si eutectic 

Sample V (gm s - 1) G (K cm - 1) ']-m (,tim) -)~e (p.m) ATm (K) ATe (K) 

01 0.10 110 56.4" 59.00 / 0.11 
02 0.63 78 28.03 • 1.72 29.32 0.25 0.38 
03 1.00 110 24.36 • 2.53 b 28.00 0.42 b 0.41 
04 5.43 43 13.62 • 0.92 10.86 1.34 1.04 
05 5.10 91 13.33 • 2.54 11,00 0.96 0.98 
06 5.05 101 12.20 • 2.51 11.25 0.86 0.97 
07 5.18 149 9.66 • 0.90 10.80 0.86 0.88 
08 11.36 43 9.54 • 1.41 7,69 2.14 1.62 
09 9,71 63 9.34 • 2.17 8.21 2.02 1.34 
10 10.00 110 7.90 • 0.70 b 7.90 1.56 b 1.34 
11 9.95 129 8.41 • 1.23 7.98 2.17 1.40 
12 9.66 149 8.02 _+ 0.32 8.07 1.46 1.38 
13 20.45 43 8.21 • 1.92 5.85 2.92 2.05 
14 20.12 96 6.60 • 0.74 5.79 2.74 2.10 
15 19.50 106 6,23 • 0.85 5.86 1,84 ZOO 
16 20.00 110 6.30 • 0.60 b 5.80 1.94 b 2.01 
17 20.50 149 5.61 • 0.39 5.68 2.26 2.02 
18 40.00 101 5.47 • 0.41 4.19 3.35 2.80 
19 39.47 103 5.50 • 0.44 4.22 3.28 3.15 
20 40.00 110 4.20 • 0.40 b 4.00 3.11 b 2.84 
21 50.00 110 3.80 • 0.408 3.58 3.45 b 3.23 
22 70.00 96 4.00 i 0.59 3.23 3.89 3.90 
23 74.90 107 4.03 i 0.60 3.12 3.56 3.58 
24 80.00 110 3.20 • 0.40 b 2.95 3.85 b 3.20 
25 100.00 110 2.90 • 0.30 b 2.58 4.31 b 4.51 
26 121.00 77 2.76 + 0.20 2.51 6.11 5.30 
27 200.00 110 2.10 • 0.30 b 1.98 6.40 b 6.75 

a Data derived from the regression equation. 
b From [23]. 
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at this critical spacing. We have proved that at this 
critical spacing, the critical splitting interface is mar- 
ginally stable. We therefore have proposed a geometri- 
cal model followed by the spacing selection, from 
which the new general scaling laws for the three eutec- 
tics are derived. These laws coincide in form with 
the similarity law recently derived by Kassner and 
Misbah [15]. 

We have also proposed another geometrical model 
followed by the formation of irregular structure for the 
eutectics with low volume ratio of the two lamellar 
phases. For the case of A1-Si eutectic, a new scaling 
law is derived according to this model. 

The precise experimental results of directional sol- 
idification of A1-Si eutectic have been presented. The 
measured data of the spacing of local regular structure 
and the average spacing of the irregular structure are 
consistent with our calculated results. The present 
experimental results for directional solidification of 
the three eutectics support our two geometrical 
models. 

Figure 14 The irregular structure of A1-Si eutectic during direc- 
tional solidification. V = 10.0 gm s -  1, G = 89 K c m -  1, longitudinal 
section. 

some problems do exist in our calculation. First, for 
the case of A1-Si eutectic, we tolerate the abrupt 
change of supercooling at the TPCP from ATg to 
AT~o, which is physically unreasonable. Secondly, we 
have given no precise mathematical proof of the two 
geometrical models. Finally, we have not applied the 
two models to other solidification systems and thus we 
do not know whether or not they are general. These 
problems will be the aims of a further study. 

5. Conclusion 
In conclusion, we have solved numerically the non- 
linear steady-state coupling equation of directional 
solidification of A1-AlzCu, Sn-Pb and A1-Si eutectics. 
The supercooling at the TPCP, the average supercool- 
ing, the profiles and the splitting features of the solid- 
ifying interface have been studied in detail as functions 
of the lamellar spacing under different growth rates 
and temperature gradients. 

We have found that when the spacing increases, the 
profile of the solidifying interface evolves from a state 
bulging into the liquid range, to a state with the 
middle parts being considerably concave in the solid 
side. A critical value of the spacing exists at which at 
least one lamellar phase has the critical splitting solid- 
ifying interface, and the solidifying interface of the 
other lameIlar phase bulges into the liquid range (i.e. it 
is super-stable). As a function of the spacing, the 
supercooling at the TPCP reaches its minimum value 
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