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Critical splitting of the solidifying
interface—geometrical model of spacing

selection during directional solidification
of lamellar eutectics
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The steady-state coupling equations of directional solidification of Al-Al,Cu (¢ = 0.94), Sn-Pb
(¢ = 0.69)and AI-Si (¢ = 0.17)eutectics have been solved numerically. The profiles, splitting
features and supercooling of the solidifying interface were investigated in detail as functions of
the lamellar spacing. It was found that when supercooling, AT,, at the three-phase conjunction
point reaches its minimum value, min (AT, ), the solidifying interface profile of one lamellar phase
was in the critical splitting state (marginally stable state) and that of the other lamella was
super-stable. Langer's marginai stability theory of lamellar eutectic solidification with a planar
interface was extended to the case with a curved interface, and a geometrical model of the spacing
selection has been suggested (critical splitting state of one lamella’s solidifying interface). The
general scaling law of the spacing, derived according to this theory, was found to be consistent
with the similarity law recently derived by Kassner and Misbah; it is also supported by
experimental results. Another geometrical model of the spacing selection was found, where the
solidifying interface profile of one lamella became split and other lamella’s profile was in the
critical splitting state. The experimental data for directional solidification of Al-Si eutectic showed

that the irregular eutectics have a spacing selected according to this mode.

1. Introduction

When a eutectic is submitted to directional solidifi-
cation, the solidifying interface forms parallel lamellae
of two coexisting solid phases, o and f. This problem
is of interest both from the view point of technological
applications [1, 2] and, more fundamentally, as an
example of spontaneous pattern formation in nature.
In the last decades, many physicists and metallurgists
have made much effort to predict the spacing selec-
tion of lamellar eutectic [3]. It is well known that
supercooling, AT, of the solidifying interface and the
lamellar spacing, A, are uniquely determined by the
solidifying rate, V. Based on the- assumption of
a planar solidifying interface, the theoretical approach
to this problem shows AT can be formulated as a func-
tion of V and A [4]

AT = KAV + K, /L 1)

where K; and K, are, respectively, the constitutional
supercooling effect and the Gibbs-Thompson effect of
the solidifying interface. This relation allows wide se-
lection ranges of both A and AT for a given V, and
therefore it cannot predict unique values of A and A7,
as shown by experiments. This problem is similar in
form to the formation of a dendritic pattern in the
growth of binary mixture [ 5] and evolution of viscous
fingers in the Hele—Shaw cell [6], and hence belongs to
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a class of pattern-formation problems far from equi-
librium in nature which are controlled by the Laplace
field. Generally, a dynamic selection principle (precise-
ly speaking, a dynamic conjecture) needs to be in-
duced in order to solve this problem. For the present
case, the minimum supercooling conjecture is com-
monly used [7] and the following scaling relation can
be obtained from Equation 1 [4]

Mo~y 2)

This relation is strongly supported by many experi-
mental results. Further, Langer and co-worker [8, 9]
and Cline [10—-14] verified that this conjecture co-
incides with the operating point of dynamically mar-
ginal stability. The problem seems to be solved.
Unfortunately, following deep discussion about this
problem above, we suspect the generality of the scal-
ing relation, Equation 2. At first, we notice that the
profile of the solidifying interface must be curved. This
is naturally determined by the coupling of consti-
tutional supercooling and the Gibbs—Thompson effect
(if we neglect the kinetic effect) of the solidifying inter-
face. Secondly, in the case for a curved solidifying
interface, is Langer’s stability theory [8], based on the
assumption of planar solidifying interface, valid? Even
if we pre-assume its validity, precisely speaking, at this
time, we do not know which point of the interface this
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theory should be applied to, because only the super-
cooling, AT'(x) at a point x of the curved interface, has
any physical meaning. If Vis high, the interface can be
approached as a plane, because A is much less than the
thermal diffusion length. If ¥ is low, this approach is
invalid. To our knowledge, the cases with
V<10 ums™' have not been investigated experi-
mentally to any great extent. Therefore, at least in the
case where V is low, the validity of Equation 2 should
be suspected. Finally, the profile of the solidifying
interface forms self-consistently. Under conditions of
directional solidification, the geometrical features of
the interface in fact are determined by the coupling of
the thermal transfer, the solute diffusion and also the
Gibbs-Thompson effect, and hence can reflect the
dynamic behaviour of spacing selection. The planar
interface approximation arbitrarily . discards this
coupling and the non-linear characteristics of the
spacing selection dynamics.

In this paper, attention is paid to the geometrical
features of the solidifying interface and the dynamic
behaviour of the spacing selection by solving numeri-
cally the non-linear steady-state coupling equation of
directional solidification of a lamellar eutectic. It will
be proved that the critical splitting state (CSS) of the
solidifying interface of, at least, one lamellar phase,
corresponds to the minimum supercooling at the
three-phase conjunction point (TPCP); at this time,
the solidifying interface forms in the stability iimit (i.e.
marginally stable). A new selection mechanism of the
spacing — the critical splitting model of the solidifying
interface — is suggested. The general scaling laws, de-
rived according to this model, are consistent with the
similarity law derived by Kassner and Misbah [15].
Finally, the selection problem of spacing of an irregu-
lar eutectic during directional solidification is also
discussed.

2. Coupling equation and numerical
calculfation

In the coordinate system shown in Fig. 1, the profiles

of a-liquid and B-liquid interfaces are expressed by

[(x) and g(x), respectively. The coupling equation can

be written as [16]

ATy — Gf(x) = i m, K cos <2L7:tx>
n=1
R )
[1+ f2(x)7"?
0<x<S, (Ga
ATy — Gygl{x) = i — my K cos (thx)
n=1

My
1+ g%(x)]>?
S,<x<8,+S; (3b)

VA C (2
K = (3)(;;2—7(E)3>SIH(~:7ES“> (K]9)]

where m, and m; are the absolute values of the liquidus
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Figure 1 The coordinate system and profile of the solidifying inter-
face of a lamellar eutectic. The spacing of the periodical interface is
denoted by A.
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slopes of o and B phases, respectively, D is the solute
diffusion coefficient, G is the temperature gradient in
the liquid in front of the solidifying interface, I'* and
I'* are the Gibbs-Thompson coefficients of the o-
liquid and B-liquid interfaces, respectively, C, is the
difference between the maximum solubilities of the
two phases. AT, is the supercooling at the TPCP. For
the detailed derivation of Equation 3, please refer to
Liu et al. [16]. The boundary conditions are

fx) = glx) = 0 as x = 8§, (4a)
') = —1tg0,,9(x) = asx =5, (4b)
ffx=0=0, gx = 8§, + 8 = ¥2) =0 (40

where 6, and 0 are the groove angles of the a-liquid
and B-liquid interfaces at the TPCP, which are deter-
mined by the mechanical balance condition at the
TPCP.

As V and G are given, another boundary condition
besides Equation 4 is required to obtain unique solu-
tions of A, ATy, f(x) and g(x) from Equation 3. In
Equation 3 the temperature gradient dependence of
solidification is included, which is, in fact, proved to be
considerable at low V' by some experiments.

Equation 3 will be solved by the finite difference
method. We have noticed that the ratio £( = S;/5,) in
volume of two lamellar phases as a key physical para-
meter has considerable influence on the profile of the
solidifying interface. Therefore, Al(x)}-Al,Cu(B)
(e =0935), Sn(x)-Pb(B) (g =0.594), Al(x)-Si(P)
(e = 0.167) eutectics have been selected as the objects
of our numerical calculations. The physical para-
meters of the three eutectics are listed in Table I {4, 17,
18], where values of 6, and 6 are calculated from the
mechanical balance condition

tgeg

o, c0s8, = op cosd (5a)
O,L sin Gu + GpL sin GB = Oy (S\b)

Of the three eutectics, the case of Al-Si is the most
complicated. For this eutectic, A7, terms in Equa-



TABLE T Some physical parameters of Al-Al,Cu, Sn—Pb, A-Si eutectics {4, 17, 18]
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tion 3a and b are not equivalent to each other, which
are respectively denoted by AT and AT§. We find the
ratio AT%/ATY >~ & This is a large defect for our
model. In fact, at the TPCP (x = §,, z = 0), strong
co-diffusion must occur between o and f phases, and
in addition, the local equilibrium condition of thermo-
dynamics will be invalid within a small range around
this point. We are convinced that AT} = AT}, under
directional solidification conditions. Here, we still
proceed by considering the validity of the local equi-
librium condition, and hence treat AT% and AT} as
two physical parameters for the case of Al-Si eutectic.

In the numerical calculations, attention is given to
the profile, the splitting features and the supercooling
terms of the solidifying interface. The detailed proced-
ures of the calculation are omitted owing to their
simplicity.

3. Results and discussion

3.1. Interfacial supercooling

As pointed out above, only supercooling at a point of
the solidifying interface has any physical meaning.
Here, we discuss the supercooling at the TPCP, ATy,
and the average supercooling, AT. (For Al-Si eutectic,
correspondingly, AT% and AT, AT, and AT}). The
definitions of these average supercooling terms are as
follows

AT = ATO—IG [f(x) + egx)]  (6a)
+ &

AT, = AT%—Gf(x) (6b)

AT, = ATH - Gg(x) (6¢)

. Sa

& = H £ dx,

. 1 S+ Sp

gix) = E—j g(x) dx (6)
BJs,

As functions of the spacing A, AT, (AT, ATS), AT
(AT,, ATy) are calculated, respectively, as shown in

Figs2-4. In general, the supercooling AT,
(AT%, AT?E) can be expressed as

ATy =alV + b/l, a>0, b>0 ¥
Thus, as a function of A, AT, (ATS, ATS) has a min-
imum value, min(ATy), and the spacing-dependent
upper curve of AT, behaves in a concave manner. AT
(AT,, ATy) has the similar form to Equation 7 and has

also a minimum value, min (AT). Interestin:g_ly, atl high

V, the difference between AT, (ATH) and AT (ATy) is
small, and the minimum value positions of AT, (AT?})

and AT (AT}) as functions of A, denoted, respectively,
by %y and iy, (e A; =2A|ar,-minar, and
Ay = A|37_ mn@am) are conmsistent with each other;
however, at low V, large difference between AT, and
AT appears, and &; moves considerably towards the
left from A, . If we now apply Langer’s marginal stabil-
ity theory [8, 9] to determine the spacing, A, forming
during solidification, we may have two mechanisms to
be selected: A, and A,.
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Figure 2 (a) Supercooling, AT, at the TPCP and (b) the average
supercooling, AT, as functions of the lamellar spacing, A, for direc-

tional solidification of Al-Al,Cu eutectic. ¥V =10pums™,
G =110Kem™ L, &y = 3.30 um, &, = 3.33 pm.
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Figure 3 (a) Supercooling, AT, at the TPCP and (b) the average

supercooling, AT, as functions of the lamellar spacing, A, for direc-
tional solidification of Sn-Pb eutectic. ¥ =30ums™*,
G =100Kem™ 1, A, = 0.50 um, A, = 0.51 pm.

3.2. Interfacial profile

From Equation 3, we infer considerable dependence
of the interfacial profile on the spacing as ¥ and G are
given. The planar approximation of the interfacial
profile is obviously invalid. Figs 5-7 show calculated
profiles of the solidifying interface with different
spacings for the three eutectics. When the spacing
A increases, in the normalized coordinate systems
shown in Fig. 5-7, the interfacial profile moves rela-
tive to the TPCP to the solid side. As A is very small,
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Figure 4 Supercooling terms, (a) AT and (b) ATE, at the TPCP
and the average supercooling terms, {c) AT, and (d) E’; as fun-
ctions of the lamellar spacing, A, for directional solidification of
Al-Si  eutectic. V=10pms™!, G=110Kem™!, % =3/A,,
Ay =270 pm, A, = 2.71 pm.
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Figure 5 Profiles of the solidifying interface with different spac-
ings, A, for directional solidification of Al-Al,Cu eutectic.
V=200ums™; G =110Kem™ % (1) 2 = 300 pm; (2) A = 15.0 yumy;
(3) A = 12.00 pm; (4) * = 1.00 prn.

the interfacial profile bulges into the liquid range;
however, the middle part of the interfacial profile
becomes considerably concave to the solid side, be-
cause A is large. Obviously, for the latter case, the
weak curvature effect of the interface indicates the
domination of the constitutional supercooling in front
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Figure 6 Profiles of the solidifying interface with different spacings,
A, for directional solidification of Sn—Pb eutectic. ¥ = 5.00 ums™%,
G=100Kem™%; (1) =500 um; (2) & =3.00 pm; (3) A = 1.20 pm;
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Figure 7 Profiles of the solidifying interface with different spacings,

A, for directional solidification of Al-Si eutectic. ¥ = 2.00 pms™?;

G=110Kcem™%; (1) A =0.50 um; (2) X = 2.70 um; (3) A = 5.00 pmy
(4) A =7.00 pm; (6) A = 9.50 um.

of the concave middle range of the interface, which will
result in further movement of the interface to the solid
side until a new lamellar phase forms in the concave
liquid range. At this time, the local lamellar spacing
will fall to half the initial spacing. Conversely, the
curvature effect, the thermal transfer and the mechan-
ical balance condition at the TPCP will restrain the
tendency of movement to the liquid side of the bulging
interfacial profile, because A is very small. Therefore,

a stable interfacial profile will bulge slightly into the
liquid range; and the concave interfacial profile on the
solid side will be unstable.

The temperature gradient dependence of the inter-
facial profile was also calculated. We found that the
profile was compelled to recover to the planar state as
G increased. However, this dependence only became
considerable at low V.

3.3. Splitting the solidifying interface

From Figs 5-7, it is noticed that the interface profile
splits when A increases. For symmetry reasons,
f"(x = 0)and ¢g”(x = A/2) can be used to characterize
the splitting features of the interfacial profiles, f(x) and
g(x), respectively. In the coordinate system shown in
Fig. 1, the interfacial profile has split as f“(x = 0) = 0
(g’(x = A/2) = 0); the profile bulges into the liquid
side as f"(x=0)<0 (¢g"'(x =2/2) <0). The latter
case is termed the super-stable state.

A detailed investigation of the splitting features was
made. f”(x = 0) and g”(x = A/2) were calculated as
functions of A for the three eutectics. The results are
shown in Figs 8-10; in Fig. 10 we use the normalized
coordinate: A = A/A,. A, is defined in Section 3.1. In-
terestingly, we find that for the three eutectics,
f"(x = 0) and/or ¢"(x = A/2) = 0 as X = 1.0. This in-
dicates that when the supercooling AT, at the TPCP

2
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Figure 8 The calculated f”(0) and g”(X/2) as functions of the spac-
ing, X, for directional solidification of Al-Al,Cu eutectic.
V=200ums ! G=110Kcem™1
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Figure 9 The calculated f"(0) and g"(A/2) as functions of the spac-
ing, A, for directional solidification of Sn-Pb eutectic.
V=3000ums™*; G=100Kcm™ 1.
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Figure 10 The calculated f”(0) and ¢”(A/2) as functions of the
spacing, A, for directional solidification of Al-Si eutectic.
V=1000pums~!, G=110Kem™1,

(for Al-Si eutectic, ATH) reaches its: minimum value,
min(AT,), at least, the interfacial profile of one lamel-
lar phase is in the critical splitting state (CSS), and the
other lamellar phase has a super-stable solidifying
interface. We also found that f”(x=0) and
g" (x = A/2) could be formulated as

f'(x = 0) (org'(x = 1/2)) = Aln(BX) (8)

where A and B are positive constants. If f'(x = 0) (or
g"()/2)) intersects with the X axis at & = 1.0, B = 1.0.
This relation will be useful in the following discussion
of pattern stability of the solidifying interface.

3.4. Geometric model — the CSS of the
solidifying interface

If we only consider cases where there is at least one
lamellar phase having its solidifying interface in the
CSS, there are five modes, as shown in Fig. 11. For
a eutectic, the corresponding modes are determined by
the splitting feature of the interface and the mechan-
ical balance condition at the TPCP, For example, for
Al-Al,Cu eutectic, because 9, ~ 05, the a-liquid and
p-liquid interfaces almost simultaneously reach the
CSS as AT, = min(AT),); however, for Sn—Pb eutectic,
because 05 < 6, the a-liquid interface is super-stable
(f"(x = 0) < 0) when the B-liquid interface reaches the
CSS as AT, = min{AT,).

For Modes (a), (b) and (c), one lamellar phase has
the super-stable interface although the interfacial pro-
file of the other lamellar phase is in the CSS. We can
prove that the pattern of this interface in the CSS is
marginally stable by dynamics. As f"(x =0)=0 (or
g"(x = A/2) = 0), we find that f(x = 0) (or g(A/2)) as
a function of A will reach its maximum value. Here,
only the case of f”(x = 0) =0 is discussed. For the
case of g""(x = A/2) =0, a similar derivation can be
given.

In the coordinate system shown in Fig. 1, at the
TPCP we have z = 0. Hence, AT}, in Equation 3a can
be treated as a constant. Because f“(x = 0) =0, we
have from Equation 3a

ATy —Gf(x=0) = X ©)
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Figure 11 The five modes of spacing selection for directional solidi-
fication. (a) CSS o-L and B-L; (b) CSS a-L, B-L; super stable
{c} CSS B-L, super-stable a-L; (d} CSS a-L, unstable B-L; (¢) CSS
B-1, unstable o — L.

[c0)

where £ = Y m,K. Let us consider a fluctuation of
n=1

the spacing, A); as the first-order approximation we

have

AT, ~GLf(x =0+ Af] = Z+AZ —T*Af"
(10)

where Af, AZ and Af” are the corresponding fluc-
tuations of f(x = 0), £ and f, respectively. Combin-



ing Equations 9 and 10, we obtain
GAf = TUAf" —AZ (11)

From Equation 3a and c, we have AX = g AA, where
a is a positive constant. From Equation 8 we have
Af"” = b(AA/A), where b is also a positive constant.
Finally we obtain

GAf = [T*(b/h) —a] Ah (12)
As AL =0, Equation 12 becomes

dx=0 _
o T

Gf(x=0) = I'*blnk—ak+C (I13b)

where C is a constant to be determined. df (x = 0)/dA
and f(x = 0) as functions of A are drawn schematically
in Fig. 12, where df (x = 0)/dX is a decreasing function
of A and f(x = 0) has a maximum value. For all three
eutectics, our calculation shows that when A = A, (i.e.
f"{x =0)=0), f(x = 0) reaches its maximum value.
This is a meaningful conclusion; physicaily, the profile
of the a-liquid interface always bulges as far as pos-
sible into the liquid range when the supercooling AT,
(AT?) at the TPCP reaches its minimum value. When
A > Ay, the interface splits, f(x = 0) is a decreasing
function of A, as shown in Figs 5-7; when A < A4,
f(x = 0) becomes an increasing function of A because
of the coupling between thermal transfer and the cur-
vature effect, and restraining of the mechanical bal-
ance condition at the TPCP.

From the stability point of view, the solute diffusion
in a liquid destabilizes the interface and attracts the
interface towards the liquid range ( f(x = 0) increases),
and finally results in midpoint-splitting of the inter-

*(b/A) — a (13a)

710)

d47(0)
dA
o
> 1

(b) EY

Figure 12 The spacing dependence of (a) f/,(0) and (b) f’(0) drawn
schemaﬁically.

face. Conversely, the thermal transfer, the curvature
effect, and also the mechanical balance condition, re-
stabilize the interface; the former two effects compel
the interface to become planar (| f(x = 0)| decreases).
During the competition between the destabilizing and
restabilizing effects, if the former effects are dynam-
ically dominant, the interface profile will bulge as far
as possible into the liquid range. Thus, dynamically,
the interfacial pattern will approach as much as pos-
sible, the stability limit for Modes (a), (b) and (c). This
limit is naturally similar to Langer’s marginal stability
principle of the tip point of needle crystal growth
[5,19]. As Langer has verified, the marginal stability
criterion coincides with the minimum supercooling
conjecture, assuming a planar interfacial profile [8, 9].
In the above section we have proved that the CSS of
the interfacial profile of one lamellar phase (the other
lamellar phase having the super-stable interface) cor-
responds to the minimum value state of supercooling
at the TPCP. Therefore, we are convinced that we can
now extend Langer’s marginal stability theory [8, 9]
into a geometrical model: during directional solidifi-
cation, a lamellar eutectic will have one solidifying
interface in the CSS and the other interface will be
super-stable.

It is useful to compare this geometrical model with
Langer’s marginal stability theory for needle crystal
growth [S]. By comparison, it can be clearly shown
that the geometrical model is physically reasonable.
At first, Langer proved that the steady-state needle
crystal selects its tip radius p = p*, at which the tip
point is marginally stable. If p > p*, the tip of this
needle crystal will become unstable, and tip splitting
will occur. For the present geometrical model, a criti-
cal spacing, A, also exists if A > A, the interfacial
profile of one lamellar phase will become unstable and
mid-point splitting will occur for this interface. Sec-
ondly, for needle crystal growth, as p = p*, the posi-
tion of the tip pointtéaches the maximum value (in the
coordinate system, moving with the growing inter-
face). For eutectic solidification, as A = A,, the mid-
point of the interface in the CSS also reaches its
maximum value (in the coordinate system shown in
Fig. 1).

3.5. Geometrical model of irregular eutectic
solidification

In Section 3.3 we investigated the stability of Modes

(a), (by and (c) shown in Fig. 11. In this section. Modes

(d) and (e) will be discussed further.

Modes (d) and (e) are obviously unstable because
one lamellar phase has a split interfacial profile, al-
though the other lamellar phase has a critical splitting
interface. In the liquid range in front of the concave
part of the split interface, the constitutional supercool-
ing effect is dominant and the curvature effect is weak.
A new lamella easily forms in this liquid range. If
a eutectic selects Mode (d) or (e) during directional
solidification, the forming lamellar structure is pre-
dicted to be irregular. For these eutectic systems with
a small value of ratio g, such as AI-Si eutectic and
borneol-succinonitrile eutectic, usually the o lamella
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has a splitting solidifying interface. The directionally
solidified structures of these eutectics are irregular
[20]. In situ observation of the solidifying interface of
borneol-succinonitrile eutectic [21] supports our dis-
cussion of the instability of Modes (d) and (¢), and
predicts that the formation of irregular structures for
these eutectics with low ¢ follows Mode (d) or (e).

3.6. Scaling law of eutectic solidification

In Sections 3.4 and 3.5, we have proposed two geomet-
rical models. Here, we calculate the scaling relation for
directional solidification of the three eutectics, accord-
ing to the two models. For directional solidification of
Al-Al,Cu eutectic and Sn—Pb eutectic, Modes (a) and
(c), respectively, will be followed. We find the spacing
A satisfies the following scaling law

A o~ VUGV (14)

where f is an increasing function of ¥ and saturates at
high V. As V is high, this scaling returns to Equa-
tion 2. Fig. 13 shows the dependence of f on V, for

Figure 13 Optimal micrographs of the regular structure Al-Si eutec-
tic forming during directional solidification. (a) ¥ = 3.10 ums™},
G = 149K cm ™!, radial section. (b) V' = 029 pyms™!, G = 106 Kem ™2,

longitudinal section.
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Al-AL,Cu eutectic with G=100Kem™! and for
Sn-Pb eutectic with G = 110 Kcm ™, f can be ex-
pressed as an exponential function of V.

For Al-Al,Cu eutectic

f ~ exp(—079G/V)
(Gin K pm™1, Vin ums™1) (13)
For Sn-Pb eutectic
f ~ exp(—03355G/V)
(Gin Kum~™, Vinpms™!) (16)

Obviously the formation of local regular structure of
Al-Si eutectic during directional solidification will fol-
low Mode (b); the scaling law differs in form from
Equation 14

Ao~ VTV L(G?Y) (17)

where f is also an increasing function of ¥ and
saturates at high V, which can be expressed as

f ~ exp(— 0.0513 GY%/V)
(Gin Kym™, Vin ums™') (18)

In fact, Equations 15 and 17 are general scaling laws
of &, and take into account the temperature-gradient
effect of spacing selection, although this dependence
only becomes considerable at low V, as shown in
Section 3.2. Kassner and Misbah [15] recently derived
a similarity law of eutectic solidification by complex
numerif:al solving of a non-linear integral-differential
equation. This law is consistent in form with Equa-
tions 14 and 17. This is strong theoretical proof of the
validity of our geometrical model. Comparing Equa-
tions 14 and 17 with Equation 2, we find that when
V> 10 ums~ !, Equation 2 is a good approach to
Equations 14 and 17. Therefore, Equations 14 and 17
are two general scaling laws.

Although Modes (d) and (e} are dynamically unsta-
ble, under the steady-state condition we still calculate
the scaling law according to these modes. Select solidi-
fication of AI-Si eutectic as an instance. The cal-
culated scaling law is

Lo~ VTUR(G)

where h is a decreasing function of G, which can be
expressed as

h ~ G %°2(Gin Kpm™?) (20)

2<n<3 (19)

The validity of Equation 19 is checked below, using
our experimental results.

4. Experiments and comparison

In recent years some experimental data on directional
solidification of the three eutectics have accumu-
lated [2,3,22], in which ¥V >=10pms ! As
V> 10ums~!, the difference between the classic
scaling law (Equation 2) and the general scaling laws
(Equations 14 and 17), will be hard to distinguish.
Naturally, when ¥V > 10 pms™*, Equations 14 and 17
are no doubt valid. Further checking of the two laws



requires new experimental data with low V, down to
0.1 pms~1, as reported by Kassner and Misbah [15].
Here we will restrict our attention to checking the case
for Al-Si eutectic, because for this eutectic both local
regular lamellar structure and irregular structure form
when V is less than 10 ums~'. This provides the
opportunity to check the validity of Equation 17 and
19 at the same time.

The experiments were performed on a unidirec-
tional solidification apparatus, in which steady-state
directional solidification with V" as low as 0.2 ums™*
can be obtained. The detailed procedure of the experi-
ment is described elsewhere [20, 22]. Unfortunately, it
is not easy to obtain much data for solidification with
such a low V, because a large amount of effort is
required for each successful experiment.

Fig. 13 shows two typical micrographs of the local
regular structure. The spacing of the local regular
structure is denoted by A,. The measured spacing, A,,
and the calculated spacing, ., according to Equa-

TABLE II The measured and calculated spacings of local regular
structure of Al-Si eutectic during directional solidification

Sample ¥V (ums™!) G(Kcm™ ') A (um) e (um)
01 0.29 106 14.97 + 0.48 15.06
02 0.57 149 11.04 + 0.35 11.18
03 1.03 78 8.01 4+ 0.37 8.37
04 1.05 149 797 +0.39 8.27
05 5.00 149 385+ 0.11 3.81
06 6.62 89 310 +0.24 3.31
07 10.00 78 2.60 + 0.15 2.70

tion 17, are listed in Table I1. Good consistency of A,
with A, proves the validity of the scaling law, Equa-
tion 17.

For the irregular structure, a typical micrograph of
the quenched solid-liquid interface can be found else-
where [20]. Fig. 14 shows the irregular structure
observed along the longitudinal section. The main
feature of the middle range of the a-liquid interface is
that it is deeply concave into the solid side, as also
reflected by the calculated profile of the solidifying
interface with large A, as shown in Fig. 7, although the
quenched interface profile is irregular.

In experiments, we have applied the thermal-differ-
ence  amplifying method to measure the interface
supercooling [22], which corresponds to the average
of AT, and AT,. The measured supercooling, AT,
and the -calculated supercooling, AT, =(AT,+
ATy)/2, are listed in Table III, where A,, and 2. are,
respectively, the measured average spacing and the
calculated spacing according to Equation 19, for the
irregular structure of Al-Si eutectic during directional
solidification. ‘

From Table 111, we are convinced by the excellent
agreement of the measured and calculated data that
the solidifying interface of irregular structure selects its
average spacing according to the Mode (e), although
we cannot give precise proof of this dynamical mode
from the view point of instability dynamics. So far, to
our knowledge, no model can obtain such strong
support from experiments, hence there is no reason to
prevent us undertaking a further study of this dynam-
ical mode: e.g. the instability analysis, etc. However,

TABLE III Comparison of the theoretical and experimental data for the directional solidification of irregular structure of Al-Si eutectic

Sample V (ums™ 1) G(Kem™1) A (umm) A (um) AT, (K) AT, (K)
01 0.10 110 56.4* 59.00 / 0.11
02 0.63 78 2803+ 172 29.32 0.25 0.38
03 1.00 110 24.36 + 2.53° 28.00 0.42> 0.41
04 543 43 13.62 +0.92 10.86 1.34 1.04
05 5.10 91 13.33 + 2.54 11.00 0.96 0.98
06 5.05 101 12.20 + 2.51 11.25 0.86 0.97
07 5.18 149 9.66 + 0.90 10.80 0.86 0.88
08 11.36 43 9.54 + 1.41 7.69 2.14 1.62
09 9.71 63 9.34 +2.17 8.21 2.02 1.34
10 10.00 110 7.90 4+ 0.70° 7.90 1.56° 1.34
11 9.95 129 841 4+ 1.23 7.98 217 1.40
12 9.66 149 8.02 +0.32 8.07 1.46 1.38
13 2045 43 8.21 +£1.92 585 292 2.05
14 20.12 96 6.60 + 0.74 5.79 2.74 2.10
15 19.50 106 6.23 + 0.85 5.86 1.84 2.00
16 20.00 110 6.30 + 0.60° 5.80 1.94° 2.01
17 20.50 149 5.61 4 0.39 5.68 2.26 2.02
18 40.00 101 547 + 041 4.19 335 2.80
19 39.47 103 5.50 £ 044 422 328 3.15
20 40.00 110 4.20 + 0.40° 4.00 3.11° 2.84
21 50.00 110 3.80 + 0.40° 3.58 3.45° 3.23
22 70.00 96 4.00 4+ 0.59 3.23 3.89 3.90
23 74.90 107 403 + 0.60 3.12 3.56 3.58
24 80.00 110 3.20 + 0.40° 2.95 3.85° 3.20
25 100.00 110 2.90 + 0.30° 2.58 431° 4.51
26 121.00 77 2.76 + 0.20 2.51 6.11 5.30
27 200.00 110 2.10 + 0.30° 1.98 6.40° 6.75

2Data derived from the regression equation.
®From [23].
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Figure 14 The irregular structure of Al-Si eutectic during direc-
tional solidification. ¥ = 10.0 uyms™ !, G = 89 Kcm ™, longitudinal
section.

some problems do exist in our calculation. First, for
the case of Al-Si eutectic, we tolerate the abrupt
change of supercooling at the TPCP from AT to
AT%, which is physically unreasonable. Secondly, we
have given no precise mathematical proof of the two
geometrical models. Finally, we have not applied the
two models to other solidification systems and thus we
do not know whether or not they are general. These
problems will be the aims of a further study.

5. Conclusion

In conclusion, we have solved numericaily the non-
linear steady-state coupling equation of directional
solidification of Al-Al,Cu, Sn—Pb and Al-Si eutectics.
The supercooling at the TPCP, the average supercool-
ing, the profiles and the splitting features of the solid-
ifying interface have been studied in detail as functions
of the lamellar spacing under different growth rates
and temperature gradients.

We have found that when the spacing increases, the
profile of the solidifying interface evolves from a state
bulging into the liquid range, to a state with the
middle parts being considerably concave in the solid
side. A critical value of the spacing exists at which at
least one lamellar phase has the critical splitting solid-
ifying interface, and the solidifying interface of the
other lamellar phase bulges into the liquid range (i.e. it
is super-stable). As a function of the spacing, the
supercooling at the TPCP reaches its minimum value
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at this critical spacing. We have proved that at this
critical spacing, the critical splitting interface is mar-
ginally stable. We therefore have proposed a geometri-
cal model followed by the spacing selection, from
which the new general scaling laws for the three eutec-
tics are derived. These laws coincide in form with
the similarity law recently derived by Kassner and
Misbah [15].

We have also proposed another geometrical model
followed by the formation of irregular structure for the
eutectics with low volume ratio of the two lamellar
phases. For the case of Al-Si eutectic, a new scaling
law is derived according to this model.

The precise experimental results of directional sol-
idification of Al-Si eutectic have been presented. The
measured data of the spacing of local regular structure
and the average spacing of the irregular structure are
consistent with our calculated results. The present
experimental results for directional solidification of
the three eutectics support our two geometrical
models.
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